8 research outputs found

    Integrated region-based segmentation using color components and texture features with prior shape knowledge

    No full text
    Segmentation is the art of partitioning an image into different regions where each one has some degree of uniformity in its feature space. A number of methods have been proposed and blind segmentation is one of them. It uses intrinsic image features, such as pixel intensity, color components and texture. However, some virtues, like poor contrast, noise and occlusion, can weaken the procedure. To overcome them, prior knowledge of the object of interest has to be incorporated in a top-down procedure for segmentation. Consequently, in this work, a novel integrated algorithm is proposed combining bottom-up (blind) and top-down (including shape prior) techniques. First, a color space transformation is performed. Then, an energy function (based on nonlinear diffusion of color components and directional derivatives) is defined. Next, signeddistance functions are generated from different shapes of the object of interest. Finally, a variational framework (based on the level set) is employed to minimize the energy function. The experimental results demonstrate a good performance of the proposed method compared with others and show its robustness in the presence of noise and occlusion. The proposed algorithm is applicable in outdoor and medical image segmentation and also in optical character recognition (OCR)

    Genetic algorithm‐optimised structure of convolutional neural network for face recognition applications

    No full text
    Proposing a proper method for face recognition is still a challenging subject in biometric and computer vision applications. Although some reliable systems were introduced under relatively controlled conditions, their recognition rate is not satisfactory in the general settings. This is especially true when there are variations in pose, illumination, and facial expression. To alleviate these problems, a hybrid face recognition system is proposed which benefits from the superiority of both convolutional neural network (CNN) and support vector machine (SVM). To this end, first a genetic algorithm is employed to find the optimum structure of CNN. Then, the performance of the system is improved by replacing the last layer of CNN with an ensemble of SVMs. Finally, using concepts of error correction, decision is made. The potential of CNN as a trainable feature extractor provides a flexible recognition system that can recognise faces with variations in pose and illumination. Simulation results show that the system achieves good recognition rate and is robust against variations in terms of facial expressions, occlusion, noise, and illuminations
    corecore